CALCULATION OF THE RADIATION OF AN
ISOTHERMAL GAS - DUST MEDIUM

Yu. A. Popov UDC 536.3
A method is proposed for calculating radiative heat transfer in homogeneous isothermal gas
—dust media.

1. For simplicity we will consider the one~dimensional problem and neglect scattering.

The total emittance of a homogeneous isothermal gas—dust medium is written in the form

(L, T)=1—— [ B, (T)e MRy, (1)
oT*
0

We will consider the transmittance of the gas having temperature T for thermal radiation with tempera-
ture T; to be known

1 ¢ —K_(T)L
— Y B, (T)e ¥ dw. (2)

g

Dy L T, Ty=

The value of D is related with absorptance A by the relationship
D (Ll T: Tz) + A(Lr T’ Tl) = 17 (3)

The absorptance of CO, and H,0 can be found from empirical formulas and graphs, which are given
in [1].

-K!
We will represent the function B, (T)e vl in the form of a superposition of Planck's function with
different temperatures

B, (T)e 0" = i 4B, (Ty)- (4)
i=1

In the general case the coefficients oj and Tj depend on L and T. The coefficient Tj can always be
selected so that Eq. (4) is fulfilled exactly for certain frequencies vy (vq, vy, . . . , vN) if vy = =, This
statement follows from the fact that for fixed v, and Tj the system of linear equations in gj, which is ob-
tained from (4), can be solved only if the determinant of this system is nonzero. But T; can be selected
such that the determinant of the system obtained is not equal to zero. Since the absorption coefficient of
dust is a continuous and sufficiently smooth function of frequency, and functions B, (T;) are also continuous
and sufficiently smooth functions of frequency, we can state that, upon an increase of the number of terms
in the expansion of (4) the accuracy of the expansion will increase if the expansion is done by the method
described above.

Using (4), we obtained from (1) for the emittance the expression

N
1
e(l, T) = 1_—T-4—ZaiTng(L, T, T)). (5)

i=1
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As an example let us consider the case where the absorption coefficient of dust is proportional to
the radiation frequency

K, =av. ()
If Eq. (4) i8 valid exactly in the Rayleigh—Jeans region, then with consideration of (6) we find
N
YaT;=T. {7)

We will take only two terms in the expansion of (4). For (4) to be fulfilled in the Wien region, it is
necessary that

T (8)
a, =1 7T, = ,
1 1 142
where
Z = al, T,<T,. 9)
We assume that
T (10
p
Then it follows from (7) that
2B
a, = -
= T (i
After this we obtain from (5)
1 Zz /
e{l, T)=1— DL, T, T)———-xuD,(L, T, Ty. (12)
( ) (1+2)4 g( 1) (1 +2)ﬁ3 g( 2/

We determine the coefficient 5 from the condition that, for the emittance of a layer of particles
with absorption coefficient (6), we obtain an exact result
1w ! (13)

e =1t

’ t@ =+t

where

Ly =N,
i=l1

Table 1 gives the total transmittance of a layer of particles Dp with absorption coefficient (6) as a
function of the parameter z.

For coefficient 3 we obtain the expression

ﬁ=a+a[ 2 ]w. (14)
(142D, @) —1

If we assume that the transmittance of the gas does not depend on the temperature of the radiator Ty,
from (5) follows the known formula

e=1—D,Dy(L, T, T). (15)
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TABLE 1. Transmittance of a Layer of Particles with Absorption
Coefficient (6) as a Function of the Dimensionless Parameter z (9)

!

z D, ) z Dp “ 2 D, ( 2 D,
0 1 : 0,40 0,2803 0,8 0,1112 1,6 0,0301
0,05 0,8297 l‘ 0,45 0,2460 0,8 0,0915 1,7 0,0264
0,10 0,6949 [ 0,50 0,2170 1,0 0,0761 1,8 0,0232
0,15 0,5870 li 0,55 0,1922 1,1 0,0639 1,9 0,0206
0,20 0,4997 | 0,60 0,1710 1,2 0,0541 2,0 0,0183
0,25 0,4284 | 0,65 0,1528 1,3 0,0462 2,5 0,0108
0,30 0,397 4 0,70 0,1370 1,4 0,0398 3,0 0,0069
0,35 0,3210 ‘ 0,75 0,1233 1,5 0,0345 4,0 0,0033

TABLE 2. Emittance of Dust-Laden Water Vapor with an Absorp-
tion Coefficient of the Particles K' = av as a Function of the Di-
mensionless Parameter z (9) (L =0.9 m, P =1 atm, T =1800°K)

1—DpDg(L, T, T) i‘ z ’ €

z I e ] l—Dp Dg (L, T, T)
0 0,22 0,22 1,0 0,955 0,941
0,1 0,48 0,46 2,0 0,990 0,986
0,5 0,85 0,83 3,0 0,9968 0,9947

Table 2 gives the results of calculating the emittance of a layer of water vapor 0.9 m thickat a pres-
sure of 1 atm and temperature of 1800°K containing dust particles with absorption coefficient (6). The
calculation was made by Egs. (12) and (15). The results for emittance agree well with one another. But
we see from Table 2 that the accuracy of calculating the transmittance of the gas—dust medium by the ap-
proximate formula

Dpe~D,D(L, T, T) (16)
decreases rapidly with increase of the concentration of particles, which is proportional to the parameter z.

Let us consider another example. Let the absorption coefficient of the particles have a form such
that for fixed L and T the equation

—K, L
:\;33 v 3
hv A (17)
e*T — 1 e*Ti |
holds true. Let K|, — 0 when v — 0, then
g, = (18)
T,
Introducing the notation
P (19)
Tl
we can write
ﬂ
T 8 T 1 (20)
hv
¢ ]

The total transmittance of the layer of particles whose absorption coefficient satisfies Eq. (20) has
the form

D=1, (21)
m3

and the transmittance of thegas—dust medium for thermal radiation having the temperature of the medium
is written with consideration of (20), (21), and (5) in the form

1 T
Dy = —=— D, (L, T, _) (22)
m in
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TABLE 3. Transmittance of
Dust-Laden Water Vapor
with an Absorption Coeffi-

cient of the Particles Satis- TABLE 4. Reflectance of
fying Eq. (20) as a Function Semiinfinite Gas—Dust Me-
of the Dimensionless dium (T = Ty = 1000°K, P
Parameter m (L =3 m, P =1atm, Ky = K?)
=1atm, T =T, = 1200°K)
, Ks,em™| Rw (€O, | R (H:0)
m { Dgp Dp Dg(L, I, 7)
e 0,170 0,170
1,0 0,56 0,56 1,0 0,163 0,167
1,2 0,29 0,33 0,1 0,154 0,154
1,5 0,125 0,167 0,05 0,150 0,137
2,0 0,048 0,070 0,01 0,141 0,119

Table 3 presents the results for the transmittance of a gas —dust medium calculated by formulas (22)
and (16). The results are given for water vapor at T = 1200°K, P =1 atm, and L. = 3 m laden with particles
whose absorption coefficient satisfies Eq. (20). We can also conclude from Table 3 that calculation of the
transmittance of thegas—dust medium by Eq. (16) for the case where ng is much less than 1 for large pL
of the absorping gas can lead to appreciable errors.

Obviously the method presented can be used for calculating the transmittance of homogeneous iso-
thermal gas-dust media also in the case where the temperature of the incident radiation differs from the
temperature of the medium

—(K (1) +K_(T)L 9
o1 SBV(TO) e KD TR gy, (23)
¢

Dgp(L5 T7 TO):

K L

For this purpose it is necessary to present B,,(To)e— Y7 in the form of a superposition of Planck's

functions with different temperatures.

2. If scattering of radiation by the particles of the medium cannot be neglected, the problem of radia-
tive heat transfer in a homogeneousgas —dust medium is conveniently solved by means of the distribution
density function of photons over the pathstraversed by them in the medium. The distribution density function
of photons over the paths was first studied in the works of Van de Hulst and Irvine {2, 3].

For simplicity we will consider the one~dimensional problem of radiative transfer through a layer
[4]. Knowing the solution of the one-dimensional problem, it is easy to obtain the solution for a plane layer
in a Schwarzschild—Schuster approximation. We will consider that the layer is bounded by black walls,
and radiation of unit intensity falls on the surface 7 = 0. The probability that a photon with frequency v will
be reflected from the medium, traversing in the medium a path of optical thickness from 7, to 7y +d7y,
will be written in the form

dWl‘V = fl (7“\” Tovv T‘v) dTw

where f; is the distribution density function over the paths for reflected photons; A, is the ratio of the
scattering coefficient to the attenutation coefficient; Ty 18 the spectral optical thickness of the layer. Like-
wise for photons passing through the layer we write

dWZ’V == f2 (}"vv Tovs Tv) dTv'

For the intensity of the reflected and transmitted radiation we will have respectively

=]

]wsjﬂ@w%wWM%;Iw:jhaw%wWM%* (24)
8 8

We will now establish the relation between the distribution density function over the paths in the case
of pure scattering A, =1 and the distribution density function over the paths for A y» # 1. For both cases
we will consider the same photon trajectory in real space. For A, = 1 the probability that the photon will
traverse path 7, to emergence from the medium will be less than the analogous quantity for pure scattering
by exp[—(1 — 7,1 times. Taking into account that the optical path in a nonabsorbing medium is A p times
less than the optical path in the same medium with absorption, we obtain

Fhyy Toy Ty) == he~(ImMny f (], RyTows ATyl (25)
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As follows from the derivation, Eq. (25) is general and is valid also for a three-dimensional me-
dium. Using (25) and (24), for the intensity and the boundaries of the medium we obtain the known ex-
pression [2, 3, 5]

Iy(s, %)= ge‘s"f(l, Xy X)dx, (26)
where the notations 0

X = )\,v‘[v; xO = }Lvrov; 8§ = _.1__‘_2\'.!_ (27)
Ay
are introduced.

Thus, knowing the intensity at the boundaries of the medium, we can find the distribution density
function of photons over the paths in the case of pure scattering by resorting to Laplacian transformation.

Let the boundary of the medium 7 = 0 be illuminated by thermal radiation with temperature T. Ac-
cording to (24) and (25), for the intensity of the reflected and transmitted radiation we will have

L= § Bo(TY [ | &My (K L dl] d. 7
0 0

In deriving (27') we did not introduce the optical thickness and we denote by I the path of the photon
in the medium up to its emergence from the medium. In this case, if the absorption coefficient of dust
K' and the scattering coefficient Kg do not depend on the radiation frequency v, we obtain

Lia= (oW T, Te ™, (K, L, Ddl. (28)
0 .

If the function
o, T, T)=oTiD,(, T, T,) (29)

can be represented in the form of a set of exponents
n
Dy(l, T, Ty) = ¥, bie <, (30)
I=1
we find from (28)

— 4 I
Iy, =0T¢ 2 b,I?’lz, 1)

where

I = Xe‘(K’+Ki)lf1‘Z(Ks, L, ydl. (82)
1,2 hy

According to (24) and (25), I, ; is the radiation intensity at the boundary of the medium for sulfur-—gas
1,2
medium with absorption coefficient K' + Kj and scattering coefficient Kg. The result, described by Eq. (31), is
valid also in the case of a three-dimensional medium. It is analogous to Hottel's result [1] for radiative
heat transfer in a gas medium bounded by walls whose reflectance does not depend on the radiation fre-

quency.

If we cannot neglect the frequency dependence of K}, and K5, in the calculation of (27) we can use the
method presented in Section 1, i.e., represent the function

B,(Ty) £ F(Kew L, 1)

in the form of superposition of Planck's functions with different temperatures.

3. As an example, we will consider the problem of reflection of thermal radiation from an isothermal
homogeneous gas-dust medium in a Schwarzschild—Schuster approximation. We will consider the scattering
indicatrix to be spherical. If radiation of unit intensity is incident upon the medium, the intensity of the re-
flected radiation has the form (e.g., [6])

_A=Vish (33)
1+VT+4
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Using (27) and generalizing the Laplacian transformation (26), we can obtain by the contour integra-
tion method

1
F(I, 5= 2 f e~y (T — ) dy. (34)
14
1]

Equation (34) was first obtained by Sobolev in [4] in connection with the problem of nonsteady-state dif-
fusion in gas. For simplification of Eq. (34) we will use the following representation of Bessel's function
of the imaginary argument I,:

!
n

[ (2) = 4 zezj e~21-02 (1 =g\ dy, (33)
I
0

which is easily obtained from the known integral representation. With consideration of Eq. (35) instead
of (34) we obtain

e—v/2

F1, o= I (v/2). (36)

Using (28) and (29), we write for the reflectance of a semiinfinite gas—dust medium the expression
Kl

R =stDg(z, T, Ty)e ki e;<21 I, (—%) dl. (37)
0 $

We assume that Kg = 0, and introduce the new variable K¢l = n:

2 K’ — /
1 — eV [y 38
Ro==\D ;,T,Tje Ry 21, | —— | dn. (38)
j\ ¢ < Ks 0/ n ' \ 2

The integral is easily calculated by the method of quadratures. The table of Bessel's function of an
imaginary argument is given in [7].

Table 4 presents a calculation of the reflectance of a semiinfinite layer of dust-laden carbon dioxide
at 1000°K and pressure P = 1 atm, and also analogous data for dust-laden water vapor for the same param-
eters. The calculation was performed for the case K' = K for some values of Kg for thermal radiation
having the temperature of the medium T = 1000°K. In making these calculations we used the quadrature
formula with a weight function e™® with three points [8]. The sufficient accuracy of the quadrature formula
used is confirmed by the fact that when Kg — « or, what is equivalent, when Dg =1, the result practically
coincides with the calculation by Eq. (33) for A = 0.5.

NOTATION
£ is the emittance;
Dg is the transmittance of gas;
A is the absorptance;
€p is the emittance of cloud of particles;
T is the temperature of gas—dust medium;
v is the radiation frequency;
B, is the Planck's constant;
K, is the absorption coefficient of particles;
Kp is the absorption coefficient of gas;
f is the distribution density function of photons over paths;
A is the ratio of scattering coefficient to attenuation coefficient;
Toy is the optical thickness of layer;
Ty is the optical path traversed bya photoninthe medium to emergence from the medium;
I is the radiation intensity;
L is the layer thickness;
l is the path length traversed by a photoninthe medium before emerging from the mediums;
T, is the radiation temperature;

Dgp is the transmittance of gas—dust medium;
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is the Planck constant;

is the Boltzmann constant;

is the Stefan-— Boltzmann constant;

is the transmittance of dust medium;

is the reflectance of semiinfinite gas —dust medium;

is the first-order Bessel function of an imaginary argument;
P is the gas pressure.

Hoga x5

=i
il
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